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Abstract. Given the iterative and collaborative nature of authoring and
the need to adapt the documents for different audience, people end up
with a large number of versions of their documents. These additional
versions of documents increase the required cognitive effort for various
tasks for humans (such as finding the latest version of a document, or
organizing documents), and may degrade the performance of machine
tasks such as clustering or recommendation of documents. To the best
of our knowledge, the task of identifying and ordering the versions of
documents from a collection of documents has not been addressed in prior
literature. We propose a three-stage approach for the task of identifying
versions and ordering them correctly in this paper. We also create a novel
dataset for this purpose from Wikipedia, which we are releasing to the
research community5. We show that our proposed approach significantly
outperforms state-of-the-art approach adapted for this task from the
closest previously known task of Near Duplicate Detection, which justifies
defining this problem as a novel challenge.

Keywords: Version Detection · Near Duplicate Detection · FCN · Wikipedia
based Dataset

1 Introduction

Creation of documents is an iterative process. For instance, legal contracts need
iterative editing to incorporate comments from stakeholders (this process is typ-
ically called red-lining), research papers go through several revisions based on
feedback from reviewers and collaborators, etc. This leads to many versions of
documents getting created. When one needs to find the latest version of a docu-
ment or organize their documents, these additional versions of documents present
added cognitive load for the user. In absence of any tool, they may have to open
and skim through the documents one-by-one, which leads to inefficiency and
fatigue. Using the names and timestamps may not always be a reliable mecha-
nism, as names are given by people and most people do not strictly adhere to

5 https://github.com/natwar-modani/versions
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any naming convention. Also, the timestamps get altered by even minor and
unintentional edits and saves (and sometimes due to moving/copying the files),
and hence, they also do not render themselves as viable solution to the problem.
Besides the human-centric motivation, several automated methods that operate
on a collection of documents, like systems that cluster similar documents [11,
16] and recommend related ones [18, 19, 14, 13, 20] may perform sub-optimally
in situations where the collection comprises of unnecessary documents, say, by
recommending redundant and/or outdated documents.

While there have been works on somewhat related problems, such as near-
duplicate document detection [4], document similarity [6], clustering [16], and
plagiarism detection [8], etc., we believe that version identification is a different
problem for two reasons. First, the notion of similarity of documents need to be
defined differently for identifying versions as we will discuss later. Second, we also
need to determine the adjacency of versions and their directionality (from older
to newer version). To the best of our knowledge, our work is the first attempt to
define this problem formally, provide a dataset and an approach for identifying
and ordering versions of documents from a collection of documents.

Our problem statement is as follows. Given a collection of documents as
input, identify the sets that are versions of each other and provides an order of
documents within each set. Please note that the collection may comprise more
than one set of versions along with some documents that have only one version.

We propose a three-stage approach for solving this problem. The first stage
of our approach divides the document collection into sets of documents that can
potentially be versions of each other for efficient computation. We use a two-
step process, where we first find very similar paragraphs across documents using
MinHash-LSH [2]. We then use the number of such (very similar) paragraphs
common to a pair of documents (relative to the number of paragraphs in the
shorter of the two documents) to determine if the pair of documents can be
potentially versions of each other. The second stage of our approach classifies
the candidate pairs of documents as versions-or-not using a fully convolutional
neural network (FCN) [12] based binary classifier. We use pairwise lexical and
entity-based similarities to create heatmap images, which are used by our pro-
posed FCN-based classifier that identifies structures that indicate local similarity
patterns. Once we determine which documents are versions of each other, in the
third stage we find the order of creation among the versions. We create a graph
with nodes as document instances and edges between a pair of document in-
stances if the previous stage determined these document instances as potentially
versions of each other. The edges have a weight based on the extent of alignment
(based on minimum transformations required to convert one document instance
into the other) between two document instances. We look for a directed chain
which has minimum weight to find the order of versions in this graph.

We create a suitable dataset from Wikipedia articles which we are releasing
to enable further research in this direction. We show experimentally that our
proposed approach significantly outperforms the appropriate baselines adapted
from closest task of Near Duplicate Detection on this task. This indicates that
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the problem of version detection is sufficiently different from the closest problem
addressed in prior work.

In summary, our contributions in this paper are:

– We propose the problem of identifying and ordering versions of documents
from a given collection of documents.

– We propose a three-stage approach for efficiently solving the problem.
– We create a novel real world data set from Wikipedia suitable for this task,

which we are releasing to the research community.
– We show experimentally that our proposed approach significantly outper-

forms the appropriate baselines adapted from closest task of Near Duplicate
Detection on this task.

The paper is organized as follows. We briefly review the relevant prior work in
Section 2. We then describe our proposed methodology in Section 3. We describe
the dataset and its construction in Section 4 and report the experimental results
in Section 5. Finally, we conclude in Section 6.

2 Related Work

Although the specific problem of identifying versions in a collection of documents
has not been addressed in previous literature, there has been prior work in
related areas of near-duplicate document detection, paraphrase detection and
plagiarism detection. While none of these related tasks require the ordering part,
the detection task can be thought of as finding document ‘similarity’, where
‘similarity’ definition depends on the specific task. For Near Duplicate Detection
(NDD), the similarity is defined at lexical level, i.e., documents that are near
duplicates of each other would have nearly the same set of words. MinHash-
LSH [2] is document fingerprinting method from the family of Locality Sensitive
Hashing (LSH) functions for estimating the lexical Jaccard similarity between
documents. [9] introduced sectional MinHash, a modification that divides the
document in sections and uses the matching for both the characteristics (words
occurring in the document) and in which section they occur. This enhancement
to MinHashLSH with sectional information achieves state-of-the-art performance
on the task of near-duplicate document detection. Most of the literature on
NDD [1, 4, 9, 7] attempts to find a good hash function hypothesizing that a better
hash function will improve the detection accuracy.

Paraphrase detection is a similar task to NDD where similarity is defined
at semantic level instead of lexical level. Several methods that use deep learn-
ing have been proposed to compute a representation in the embedding space
that can capture semantic similarity more effectively irrespective of the lexical
differences [17, 3]. However, even though consecutive versions go through some
paraphrasing of already existing content, the common content across versions is
largely preserved lexically. However, different versions of same document are not
always near-duplicates or paraphrase of each other and may involve considerable
addition/deletion of content, which NDD/paraphrasing methods fail to consider.
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For plagiarism detection, similarity can be thought of as having overlapping
segments between the documents. Accordingly, [15, 8, 5] focus on finding over-
lapping segments across documents along with the extent of overlap. [15] used
sentence-level tf-idf to quantify similarity at sentence level and proposed an al-
gorithm to find maximal length overlapping segments. [5] used a Vector Space
Model (VSM) with Parts-Of-Speech (POS) tagging, Named Entity Recognition
(NER), etc., to generate potential candidates for plagiarism detection. [8] used a
similar approach but only with POS tags and n-grams. While these approaches
can be useful in detecting versions in a pair-wise manner, they do not solve the
task of finding appropriate sets of documents and do not attempt to identify
the ordering. Also, these methods rely largely on tf-idf frequencies and do not
capture the patterns inside matching versions.

Given the motivation, the need for being able to address the problem of iden-
tifying versions from a collection is validated, and therefore, both an approach
and dataset for this task are missing links we attempt to address in this paper.

3 Proposed Methodology

The key intuition we use to detect the versions of a document is that typically,
across versions, the local lexical structure is preserved to a degree, even if at
global level, it changes significantly. Typical edits to evolve the document from a
version to the next version are insertion of new content, deletion of some of con-
tent, and replacing small parts of content. Sometimes, parts of content are also
moved around with small degree of edits. In most cases, the edits do not replace
very large parts of documents across versions. Hence, versions of a documents
are not only semantically similar, even the words, sentences and paragraphs are
largely preserved across versions. Further, even in case of paraphrasing, typically
the entities are preserved even if the other words are changed.

Leveraging this insight, we design a three-stage approach. In the first stage,
we want to efficiently find candidate set of documents that can possibly have
a version relation among them, while retaining a high recall. Following that,
we want to do more precise classification on a pairwise basis to determine if
two documents are versions of each other. Finally, once we have pairwise version
relation determined, we order all the versions correctly together. The reason why
this task is required is due to the fact that not all predictions on the document
pair level are going to be correct. For example, some additional pairs may be
deemed to be versions of each other, which makes it difficult to know what is
the correct order of these versions of the document.

3.1 Candidate Selection

Given that for a collection with n documents, the number of pairs of document
are O(n2), which can be computationally expensive if we naively compare every
pair of documents. So we use MinHash-LSH [2] based approach to find these can-
didate sets efficiently. However, instead of a direct application of MinHash-LSH
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on document level, we propose a two-step approach for better accuracy. We take
the paragraphs as unit and compute the MinHash for each of the paragraphs. We
use Locality Sensitive Hashing (LSH) to put the paragraphs in the same bucket
if they are lexically very similar (defined as having a Jaccard similarity higher
than a threshold when considering the paragraphs as sets of words). LSH can
be tuned to put similar items in the same bucket and putting dissimilar items
in different buckets with certain level of probability [2].

We then generate the candidate sets in the following manner. We scan the
buckets one at a time. For each pair of paragraphs in one bucket, we increment
count of votes for the pair of documents from which these paragraphs come from.
Now, after scanning all the buckets, we check the number of votes for each pair
of documents and compare that with the length of the documents in terms of
paragraphs. We deem the document pairs as a candidate if the number of votes
for this pair are larger than a certain fraction of the number of paragraphs in
the smaller of the two documents.

The idea of dividing the document into smaller units (sections) was used
in [9] also. However, their approach was to divide the document into a fixed
(and typically, small) number of sections and look for match not only for words,
but also for in which section of document are they found. By using this addi-
tional information (about location of the words), they improve the error metric
compared to a vanilla MinHash-LSH based Near Duplicate Detection system.
However, for our setting, there can be significant changes between versions of
the document, we want to not only look for existence of similar paragraphs but
want to allow for addition/deletion of content (in addition to small changes to
content within preserved paragraphs).

3.2 FCN-based Binary Classification

The next step is more precise binary classification for version relation of can-
didate pairs of documents. While our eventual task is to identify document
instances that are versions of a document, and arrange them in an order, we
believe that trying to solve a simpler version of this problem and then using
post-processing to recover the order (as discussed in next subsection) may per-
form better.

Hence, we take three different definitions of a pair of documents being related
by version relation. Consider a set of v documents that are versions of a docu-
ment, say D1, D2, ..., Dv. Here, D1 is the first version of a document, D2 is second
version, and so on, till Dv which is the latest version. The three definitions are
as follows:

Definition 1. Undirected (and not necessarily adjacent): Any two of
these documents Di and Dj, 1 <= i, j <= v, i 6= j are considered as related.

Definition 2. Directed (but not necessarily adjacent): Two of these doc-
uments Di and Dj are considered as related if 1 <= i < j <= v.
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Definition 3. Adjacent (and directed): Two of these documents Di and Dj

are considered as related if 1 <= i < j <= v and i+ 1 = j.

In addition to the local lexical structure preservation, we believe that typi-
cally, the entities present in the document tend to be preserved across versions.
Based on these two hypotheses, we design our feature set for the classifiers for
a candidate pair of documents. We construct a matrix of dimensions m × n,
where m and n are the lengths of the first and second document respectively in
the pair in terms of number of sentences. Please note that while for candidate
generation, we operated at paragraph level, for the binary classification task, we
are operating at a sentence level.

We compute similarity between every sentence i of first document with every
sentence j of the second document based on lexical structure, denoted by SL

ij and

based on entities involved, denoted by SE
ij . Lexical similarity SL

ij is computed by
representing the sentences in terms of sentence level TF-IDF (used earlier in [15]
for plagiarism detection, essentially treating each sentence as a document and
computing TF-IDF based on this treatment) vector representation and taking
the cosine similarity. Entity based similarity SE

ij is taken as the Jaccard similarity
between the entities present in the two sentences.

While it is not obvious if two documents are versions of each other by ana-
lyzing the individual values within these matrices, it is fairly straightforward to
observe emergent patterns in the 2D heatmaps constructed using these raw val-
ues. We can clearly see presence of local diagonals like patterns in the heatmap
in Figure 1a. On the other hand, Figure 1b shows example of document pair
which may have overlapping words, but the clear local diagonal patterns are
missing. We train FCN-based binary classifier on these heatmaps.

Fully Convolutional Networks [12] have proved to be capable of modeling
complex patterns in visual data by extracting meaningful features from images

(a) Prominent local diagonals (b) Local diagonals are absent

Fig. 1: Examples of pair of documents that are (a) versions of each other, and
(b) that are not
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given supervised data. This motivated us to leverage FCNs for our usage for iden-
tifying the version relatedness between two documents. We specifically choose to
go with FCN (as opposed to other convolutional networks) as they are invariant
to the size of the heatmap and they can provide equally rich representation as
the standard CNN architecture. They have a clear advantage while working with
images which have a skewed aspect ratio. Our heatmap is clearly not square in
shape, hence, if we use interpolation technique over it to fit to certain size (as
required by conventional CNNs), the image has a high chance of getting dis-
torted, i.e., the patterns of local diagonal in the heatmap can get diluted due to
bi-linear interpolation. However, with FCN the exact size does not matter if it is
less than the max size. Even if the image dimensions do exceed a certain maxi-
mum, we can easily pool it back to the required size. In the case of max-pool it
only changes the granularity of sentence level heatmap, i.e., in that case we can
think of the heatmap as sentence similarity matrix with a window and stride of
2 sentences. We train the FCN directly on two channel heatmap (one channel
corresponding to lexical similarity and another for entity-based similarity) to
predict if the two documents are related by the version relation. This allows the
model to automatically extract the useful patterns.

As originally proposed [12], the FCN is composed of both encoders and de-
coder parts. On the other hand, for our formulation we use just the encoder for
compressing the similarity heatmap to a feature vector which is then used for bi-
nary classification. This is a little different to what FCNs are used for in general,
that is semantic segmentation. But we do borrow and preserve an interesting
property of convolution networks which is the fact that they respond to specific
local patterns in an image. The heatmap constructed by us may have patterns
like “local diagonals” which may be useful for classification. Another motivation
for using FCN instead of a normal CNN is that FCNs are robust to the dimen-
sions of the image. Since the documents have variable sizes, this means that
the heatmaps themselves are of different aspect ratios (often becoming really
extreme). FCN helps address the above problem. In practice the encoder also
needs a fixed size image (200× 200 in our case), so we pad the rest of the image
by zeros. If the input has a larger length than 200 in any dimension, we max pool
it to bring it down inside the 200× 200 box (We can also apply max pool across
2D spatial-dimension after applying FCN for images of larger dimensions). Note
that we also need to pad in case of CNNs but it’s ability to detect patterns can
be hampered by various aspect ratios which is not the case for FCNs. The only
difference in our case when compared to a standard CNN is that we are using
1× 1 convolution in place of a fully connected layer.

3.3 Finding the Order Among Versions

If we think of each instance of every document as a node and adjacent directed
version relation as a directed edge, then the versions of a document will form a
directed chain, if there is only one evolution path of the document. If the doc-
ument is repurposed, we may see multiple outgoing edge from some nodes, and
hence may get a tree. Our objective is to partition the set of all nodes as the
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trees/directed chains of versions of documents. The pairwise labelling may not
provide sufficient information to construct this tree/chain if we use Undirected
(definition 1) or Directed (definition 2) definitions of version related pairs. Ad-
jacent (definition 3) definition provides sufficient information to construct the
tree/directed chains in theory. However, in practice, the accuracy of models for
this definition is lower (as the task is harder). Hence, we have many more false
positives (which may create a graph more complex than trees/chains, including
cycles) and false negatives (which may break the group of versions of a document
into multiple chains/subgraphs) as we see in our experimental results.

Hence, we introduce a third part of the processing, where we take the binary
classifier output and construct the graph. We then find all connected compo-
nents within this graph and create fully connected subgraph (clique) for each
connected component by adding all the missing edges. This step helps us in
further increasing our recall by providing additional candidates for our final
objective. Then the edges are assigned weight by computing a ‘version score’
between the pair. Finally, we compute the maximum weighted spanning tree on
this graph.

We propose two ways of calculating the version scores. First is directly taking
the FCN output as a number in range [0, 1] instead of the binary output, which
we call as FCN-Predict.

Another way to define the version score for the edge weight is as follows
(called as alignment version score):

V = S − λ1 × I − λ2 ×D (1)

where, S is the alignment score (explained later), I denotes the number of sen-
tence insertions, and D denotes the number of sentence deletions, and λ1 and
λ2 are hyperparameters. Version Score can be understood to be a measure of
alignment (or inverse of ‘distance’, in terms of changes required to convert one
document to the other, between them) between two documents. Once we com-
pute the version scores, for each connected component, we make the smallest
document as the root of the tree and then do a topological ordering of the above
tree to use that as a chain. This chain provides us with the final ordering among
documents that are versions of each other.

To compute S, I, and D, we construct a heatmap M of sentence-level simi-
larity by taking a linear combination of heatmaps that capture lexical (SL) and
entity-based (SE) overlap. Alignment Score S is computed using Dynamic Pro-
gramming algorithm over the matrix M with elements Sij = (SL

ij + λ3S
E
ij ) (rep-

resenting the overall similarity between sentence i of document 1 with sentence
j of document 2, with λ3 being a hyperparameter) to find maximum possible
reward to go from the index (0, 0) to index (m,n) where m and n are number
of sentences in documents i and j respectively.

At each element of the matrix M , we have 3 options, move diagonally with
reward Rd = Sij (corresponding to the sentence being modified from sentence i
of document 1 to sentence j of document 2), move horizontally (corresponding
to deleting a sentence from document 1, counted in D) or move vertically (corre-
sponding to inserting a sentence into document 2, counted in I). The goal of this
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approach is to quantify the extent of alignment between two documents based
on minimum transformations required to convert document 1 to document 2 by
finding the highest reward traversed path from the index (0, 0) to (m,n). If the
documents were exactly same, the path would lie along the diagonal with all Sij

values as 1. However, if a new sentence j is added to document 2, the traversal
would involve a horizontal movement. Similarly, if a sentence has been deleted
from document i, it would involve a vertical movement. Consequently, we quan-
tify the number of sentence insertions I and sentence deletions D as the number
of horizontal moves and vertical moves in the traversed path, respectively, and
subtract it from the alignment score S to get a version score V .

The intuition behind these two definitions of version score is as follows. The
FCN based score is going to capture the level of preservation of local lexical
structures and entities. However, since it is trained for a binary classification task,
it is not clear if the score would be appropriate for the task we are using it for. On
the other hand, the direct alignment based score is specifically designed for this
task. However, it would not capture the similarity present between documents
if some segments of the document are moved within it. Hence, we use both of
these and determine the appropriate method empirically.

4 Wikipedia Versions Dataset

Due to lack of an existing large-scale dataset suitable for our problem, we curated
a new dataset using revision history of Wikipedia articles. We took Wikipedia
revision dumps that contain all revisions of Wikipedia pages on a certain topic.
Each revision is accompanied by some metadata (like timestamp, parent id, etc.).
To ensure that we consider versions that are sufficiently different from each other,
we use timestamps in an automated filtering process to create the dataset.

Each edit made by the user to a Wikipedia page can be considered a sep-
arate version of that Wikipedia page (these are referred to as revisions in the
Wikipedia terminology). However, often there are some artifacts in the revisions
– for example, troll edits are insincere edits made by users. We observe that
these edits do not last, and the page is reset to the last relevant version by the
moderators within a short duration. Based on this observation, we remove all
edits that do not last more than AV E/10 seconds, where AV E is defined as the
average time between successive edits for a given Wikipedia page. Instead of set-
ting a global threshold, this threshold varies for every page because some pages
are edited more frequently than others. We use timestamps obtained along with
metadata for the purpose of filtering. Next, we filter out pages that are rarely
edited. This is done by setting a hard threshold – i.e., pages should consist of at
least 10 versions. After this we stochastically sample bU(min,width)c revisions
from all versions, U is the uniform distribution, min is the minimum number of
samples, min+width+1 is the maximum number of samples, and b.c is the floor
function (greatest integer no larger than the number). We take min to be 7 and
width as 5. However, since it is still possible that the set of revisions obtained via
uniform sampling don’t have considerable differences between them, we stochas-
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tically filter out more revisions to encourage differences between them. This is
done by having higher probability of sampling versions which have more differ-
ence in terms of length of the documents with the previously selected versions.
This increases the probability of having the set of versions that differ more in
content.

Once we obtain the list pages and the versions being considered for each
of them, we scrape the Wikipedia article corresponding to each version. We
remove all additional information in sections like References, Category, etc. from
the scraped articles. This is done to ensure that the model doesn’t utilize this
information to learn undesirable patterns, and to ensure that the identification
of relations is solely based on the content.

Our final dataset comprises 1, 755 unique Wikipedia articles with a total of
10, 267 versions; each article having 5.85 versions on average. We split the dataset
into train, validation, and test sets in the ratio of 0.7 : 0.1 : 0.2, respectively.
As mentioned in the introduction, we are releasing a dataset generated in this
manner to the research community.

5 Evaluation and Results

In this section, we present our experimental results. First, we discuss the baseline
we design to compare its performance against that of our approach.

Baselines: We use the Sectional MinHashLSH that achieves state-of-the-art
results on near-duplicate detection task [9] as the baseline for binary classifica-
tion. For ordering, we use the content length as baseline, i.e., a longer document
is deemed as more recent version compared to a shorter ones.

Parameter Choices: All the hyperparameters were assigned via a grid
search.
Candidate generation parameters: The threshold in MinHash-LSH for deeming
two paragraphs as near duplicate was 0.5, and number of permutation func-
tions used was 1024. The threshold on fraction of paragraphs (of the shorter
document) that need be near-duplicate for including the pair of documents are
candidate for being a version related pair was taken as 0.3.
FCN Architecture: There are 7 (2D-)Convolution layers followed by a Sigmoid
layer in our implementation of FCN. The stride for all the convolution layers
is 1 × 1 and activation function is ReLU. All convolution layers are followed
by (2D-)batch normalization [10] (except last convolution layer) and (2D-)max
pooling (with kernel size 2 × 2) except last two convolution layers. The kernel
size is 5×5 for first, second and fifth convolution layers, 7×7 for third, 6×6 for
fourth, 3×3 for sixth and 1×1 for the seventh convolution layer (and therefore,
it is like a fully connected layer). A padding of 2 × 2 is used in first two layers
and 3× 3 for third layer. Other layers do not use padding.
Version ordering related parameters: λ1 and λ2 (weight of insertions and dele-
tions in Equation 1, respectively) were taken as −0.05 and 0.15, respectively,
and λ3 (weight of entity-based similarity with respect to lexical similarity) was
taken as 1.4.
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MinHashLSH 0.7133 0.8216

0.7518 0.7956

0.7812 0.7765

mod MinHashLSH 0.7245 0.8312

0.7612 0.7981

0.7913 0.7797

MinHashLSH 0.7133 0.8216

0.7518 0.7956

0.7812 0.7765

mod MinHashLSH 0.7245 0.8312

0.7612 0.7981

0.7913 0.7797

Precision Recall Recall

0.7133 0.8216 0.8312

0.7518 0.7956 0.7981

0.7812 0.7765 0.7797

Recall Precision Precision
0.6518 0.8562 0.8719
0.6816 0.8443 0.8612
0.7217 0.8132 0.8416
0.7765 0.7512 0.7913
0.7956 0.7218 0.7691
0.8216 0.6801 0.7363
0.8527 0.6363 0.6875
0.8805 0.6023 0.6532
0.9234 0.5563 0.6032
0.9517 0.5071 0.5682
0.9801 0.4563 0.5432
0.9936 0.4013 0.5119

Fig. 2: Comparison of Sectional MinHash-LSH and modified MinHash-LSH

Candidate Selection: We first evaluate the effectiveness of MinHash-LSH
for candidate selection. Given the size of our dataset (2, 068 versions of 351 doc-
uments in the test set), an all-pair comparison would lead to more than 4.2
million (for Adjacent; for Undirected and Directed, it is half as many) pair-
wise checks. The ground truth number of version pairs are 10, 426 for definition
1 (Undirected), 5, 213 for definition 2 (Directed) and 2, 053 for definition 3
(Adjacent). Figure 2 shows the precision and recall trade-off curves for the Sec-
tional MinHash-LSH based approach and our proposed approach for finding the
candidate pairs. Based on the operating point we choose (shown by ? in Figure),
we end up with 19, 307 pairs for Undirected, 9, 667 for Directed and 3, 876
for Adjacent, which are significantly lower than the näıve quadratic number of
pairs. Also, Figure 2 shows that our proposed two step method achieves up to
10% higher precision for a given recall value compared to Sectional MinHash-
LSH method. Also, the gap in performance of Sectional MinHash-LSH and our
proposed method increases as we go towards the higher recall side, which are the
preferred operating point, as we do not want to discard too many actual version
pairs in this stage.

Binary Classification: Now we compare the performance of our proposed
approaches for binary classification task. We also train a Logistic Regression
(LR) classifier using hand-crafted features obtained from the similarity heatmaps
for comparison purpose. The features were obtained by quantifying the correla-
tion (corr(.)) between the two indices of the lexical (SL) and entity-based (SE)
similarity matrices discussed above. We use corr(SL), corr(SE), corr(SE ◦SL),
corr((SL)16), corr((SE)16), corr((SL+SE)4), and corr((SL−SE)4); ◦ denoting
element-wise multiplication. We also experiment with several other higher pow-
ers in the range of [2, 16] and we find that the mentioned set of features perform
the best. While training the logistic regression model with all the higher powers,
we note that the learned β-coefficients for powers which are not noted above
were insignificant and could be dropped without a noticeable change in the final
precision or recall scores.

To evaluate the performance of models, we consider the three settings defined
earlier: (a) undirected and not necessarily adjacent (Undirected), (b) directed but
not necessarily adjacent (Directed), and (c) directed and adjacent (Adjacent). As
it is evident from the discussion earlier, these three settings progressively become
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Table 1: Performance after the binary classification stage (average of 5 runs).
Columns in the left indicate the performance of various models on the end-to-end
task, whereas the ones in the right indicate the performance of binary classifiers
alone on the tasks they were trained for, respectively

Candidate Gen + Classifier wrt GT Classifier Only for Respective Tasks

Type Model F1 Precision Recall F1 Precision Recall

Undirected

Baseline 0.3361 0.3210 0.3527 0.4163 0.4367 0.3977
LR-LS 0.3718 0.4089 0.3410 0.7216 0.7342 0.7094
LR-Full 0.3817 0.4169 0.3520 0.7813 0.7914 0.7714
FCN-LS 0.6012 0.6373 0.5690 0.7862 0.8006 0.7723
FCN-Full 0.6339 0.7087 0.5734 0.8743 0.9031 0.8472

Directed

Baseline 0.3361 0.3210 0.3527 0.3642 0.3743 0.3546
LR-LS 0.3519 0.4063 0.3101 0.4179 0.4332 0.4036
LR-Full 0.3853 0.4371 0.3461 0.4354 0.4679 0.4071
FCN-LS 0.6191 0.6371 0.6020 0.6672 0.6817 0.6533
FCN-Full 0.6547 0.7216 0.5991 0.7246 0.8312 0.6422

Adjacent

Baseline 0.3361 0.3210 0.3527 0.3361 0.3210 0.3527
LR-LS 0.3819 0.4197 0.3504 0.3976 0.4420 0.3613
LR-Full 0.4011 0.4562 0.3579 0.4139 0.4837 0.3617
FCN-LS 0.6376 0.6551 0.6210 0.6306 0.6306 0.6317
FCN-Full 0.6987 0.7832 0.6306 0.7036 0.7583 0.6562

more challenging, but also get closer to the actual task at hand. For instance,
detecting adjacent relations is harder than detecting directed relations, as it
involves not only identifying that document A comes before B, but also whether
it comes immediately before B. For each of the three settings, we construct
negative and positive examples according to the above formulation and quantify
the performance of our models. Since the number of negative samples are much
more in number, we sample three times the number of positive samples from the
set of all negative samples to get a reasonably balanced training data set.

We run the Logistic Regression and FCN networks on only the lexical similar-
ity heat map (LR-LS and FCN-LS, respectively), as well as, on both the lexical
and entity-based similarity (LR-Full and FCN-Full, respectively), in addition
to the baseline. Table 1 shows the performance comparison. The left-hand side
columns give result for the eventual task of identifying consecutive versions in
correct order. Please note these results compare the performance with respect
to the ground truth, so the loss of recall due to candidate selection is also re-
flected in the loss of recall in these columns. Of course, the baseline operates
directly on the full set and does not have corresponding loss of recall due to any
pre-processing. In all the three settings FCN outperforms LR, and they both
outperform the baseline significantly. Further, one can also see that by including
the entity-based similarity (in FCN-Full and LR-Full), the performance for the
classifier improves significantly.

The right-hand side columns of Table 1 give results for the tasks the clas-
sifiers were trained on. Here, the performance is with respect to the candidate
pairs (and not ground truth). As one can see, our proposed FCN-Full classifier
performs considerably better than other models, consistently on all metrics and
tasks. Since the performance of LR depends on features that are symmetric with
respect to document order, it performs a lot worse in identifying directed and
adjacent version relations. We also note again that including entity-based simi-
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Table 2: Performance of models trained on different task on the end-to-end task
of detecting adjacent versions (average of 5 runs).

Type Model F1 Precision Recall

Baseline 0.4231 0.3997 0.4494

Undirected
FCN-Predict 0.6643 0.7012 0.6310

FCN-Full 0.6761 0.7128 0.6430

Directed
FCN-Predict 0.7013 0.7281 0.6764

FCN-Full 0.6942 0.7273 0.6640

Adjacent
FCN-Predict 0.7116 0.7560 0.6721

FCN-Full 0.7142 0.7333 0.6860

Table 3: Performance of models trained on different task on task of detecting
undirected/directed/adjacent versions, as applicable (average of 5 runs)

Type Model F1 Precision Recall

Undirected
Baseline 0.7731 0.7518 0.7956

FCN-Predict 0.8933 0.9110 0.8763
FCN-Full 0.8961 0.9122 0.8805

Directed
Baseline 0.7374 0.7140 0.7623

FCN-Predict 0.8291 0.8648 0.7962
FCN-Full 0.8261 0.8431 0.8012

Adjacent
Baseline 0.4231 0.3997 0.4494

FCN-Predict 0.7116 0.7560 0.6721
FCN-Full 0.7142 0.7333 0.6860

larity also helps in detecting version, as the performance of FCN-Full (LR-Full) is
better than FCN-LS (LR-LS), which only uses lexical similarity heatmaps. We
also note that baseline performs significantly below the proposed approaches,
even though, these tasks (particularly, Undirected setting) are closer to what
the baseline was designed for.

Version Ordering: We now discuss the result of arranging the versions in
full ordered sequence. Since for this dataset, the versions form a chain instead of
general directed acyclic graph, we restrict our algorithm to find directed chains
with maximum weights. Comparing the results given in Table 1 (for stage 1
and 2) with Table 2 (for stage 1, 2 and 3) shows that our proposed step helps
improve the results significantly for Undirected and Directed settings (≈ 6%),
whereas for Adjacent, the improvement is modest (≈ 2%), as expected. While
using Adjacent setting still leads to best performance on the overall task, the gap
in performance is reduced significantly. Also, please note that the two methods
that we use to compute the version scores – using the prediction scores of FCN
(FCN-Predict) and using the edge weights based on alignment based version
score as described in Section 3.3 Equation 1 (FCN-Full), yield similar results
consistently across different tasks and metrics.

While our objective was to find directed ordered chains of versions of docu-
ments, we also present the result for a task based on Undirected, Directed and
Adjacent. In Table 3, we see that the performance of our proposed approach
is consistently better than the baseline approach across all the three settings
and the three metrics. This shows that even though the baseline methods were
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closest to Undirected, our method still outperforms it significantly. Of course,
for the objective we set out to achieve, the ratio of performance is even more
impressive in favour of our proposed approach. As expected, we also observe a
consistent drop across the three metrics as we move from the Undirected setting
to the Directed setting, and then to the Adjacent setting. We attribute this drop
to the progressive increase in task’s difficult, as discussed earlier.

6 Conclusion

In this work we introduce a novel problem, namely, detecting and ordering ver-
sions of documents (in which they were created) from a document repository.
We created a dataset, which we share with the research community, and also
provided an end-to-end approach for the task. The dataset will help further the
research in this domain. Our proposed approach involves three parts where we
start by finding candidate documents using MinHash-LSH and then classify the
selected candidates using an FCN-based classifier. The last step of our approach
involves identifying the order of versions by finding the maximum spanning tree
in the graph where documents are considered to be nodes and the edge-weights
denote the version score between them. Our empirical results show that the indi-
vidual parts of our proposed approach perform better than standard approaches
and the end-to-end approach outperforms the state-of-the-art approach for near-
duplicate document detection (NDD). This also indicates that the problem is
sufficiently different than NDD, and therefore worthy of further research.
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